x^4=-x^2-1

Simple and best practice solution for x^4=-x^2-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^4=-x^2-1 equation:


Simplifying
x4 = -1x2 + -1

Reorder the terms:
x4 = -1 + -1x2

Solving
x4 = -1 + -1x2

Solving for variable 'x'.

Reorder the terms:
1 + x2 + x4 = -1 + -1x2 + 1 + x2

Reorder the terms:
1 + x2 + x4 = -1 + 1 + -1x2 + x2

Combine like terms: -1 + 1 = 0
1 + x2 + x4 = 0 + -1x2 + x2
1 + x2 + x4 = -1x2 + x2

Combine like terms: -1x2 + x2 = 0
1 + x2 + x4 = 0

Begin completing the square.

Move the constant term to the right:

Add '-1' to each side of the equation.
1 + x2 + -1 + x4 = 0 + -1

Reorder the terms:
1 + -1 + x2 + x4 = 0 + -1

Combine like terms: 1 + -1 = 0
0 + x2 + x4 = 0 + -1
x2 + x4 = 0 + -1

Combine like terms: 0 + -1 = -1
x2 + x4 = -1

The x term is x2.  Take half its coefficient (0.5).
Square it (0.25) and add it to both sides.

Add '0.25' to each side of the equation.
x2 + 0.25 + x4 = -1 + 0.25

Reorder the terms:
0.25 + x2 + x4 = -1 + 0.25

Combine like terms: -1 + 0.25 = -0.75
0.25 + x2 + x4 = -0.75

Factor a perfect square on the left side:
(x2 + 0.5)(x2 + 0.5) = -0.75

Can't calculate square root of the right side.

The solution to this equation could not be determined.

See similar equations:

| 2(2x-3)=3(2x+4) | | n^2-9n-36=0 | | 3x+5y+7=0 | | 4c+3=100 | | 6x+18=6x+4 | | 12-2(x+5)=25+3 | | 0.25r-0.25+0.25r=.5-0.25 | | 3s+2n=180 | | 6x+9=55x | | 3x+15=6x+8 | | (x^2-16x+64)(x-2)=0 | | 3(-1)-7y=19 | | 3(c-2)=3(m-1) | | 3x+2=5(x-2) | | 4x-16=28-3x | | 5x-9x=7x | | 5x-18=15x-102 | | 6x=8-2y | | -8+9k=4+8k-7 | | x^2-50x+624.489+576=89 | | 7x+20=-15 | | -3x+20=-10 | | 1.6=3.7-0.3x | | x+8=-4x-12 | | x^2-50x+624=0 | | 2x+16=4x+12 | | -4x-16=12 | | 2(3g+2)=1.5(12g+8) | | 105*180/60= | | 5x+18=68 | | 6x+17=65 | | 8w=9 |

Equations solver categories